Each servent handles at most 3 incoming connections and 3 outgoing connections. In total, a servent has up to 6 concurrent connections at the same time. To connect to another servent given its IP and port number, a servent tries to create a TCP connection. The other servent accepts the connection and they start to handshake.

The connection initiator sends a string (case-sensitive)

GNUTELLA CONNECT/0.6\r\n

Here, '\r' is the carriage return character (ASCII code 13), and '\n' is the line feed character (ASCII code 10). 

The servent accepting this connection sends back

GNUTELLA/0.6 200 <string>\r\n

if it wants to accept this connection. The status code 200 is meant to indicate that the servent accepts the connection. The <string> that comes after should be "OK", but it could be a welcome message. Examples of valid connection-accepting replies are

GNUTELLA/0.6 200 OK\r\n

GNUTELLA/0.6 200 Hello. Welcome!\r\n

The initiator prints out the welcome message (whether or not it's "OK" or something else), and also confirms the connection with

GNUTELLA/0.6 200 <string>\r\n

The other end prints out the <string> too. This is like a "thank you for accepting me" message.

If the receiving servent does not want to accept the connection, it replies with 

GNUTELLA/0.6 503 <error-message>\r\n

indicating the error condition or the reason for not accepting this connection. Example of possible "connection denied messages" include

GNUTELLA/0.6 503 Maximum number of connections reached. Sorry!\r\n

3.2 Message formats

After connecting to the network, the new servent and other servents exchange messages. Each message has a 23 byte header followed by the payload of arbitrary length. All fields are in big-endian format. Also, all IP addresses are in IPv4 format (32-bit integer).

Precisely, each message is of the following format:

	Bytes
	Field Name
	Description
	 

	0-15
	Message ID
	A Unique Message ID. This should be a GUID (globally unique ID).

Servents SHOULD store all 1's (0xff) in byte 8 of the GUID. (Bytes are numbered 0-15, inclusively.) This serves to tag the GUID as being from a modern servent. Servents SHOULD initially store all 0's in byte 15 of the GUID. This is reserved for future use. The other bytes SHOULD have highly random values.
	Header

	16
	Message Type
	One of four possible types:

 0x00 = PING

 0x01 = PONG

 0x80 = QUERY

 0x81 = QUERY HIT

These do not have to be the only message types available. However, Gnutella only supports these types. If a message of a type other than those indicated above is received, then the Gnutella servent must drop the message.
	

	17
	TTL
	Message's Time To Live, which is an unsigned integer, set initially by the original sender and decreased by 1 at each servent that receives it. A message must not be forwarded if TTL is 0. Originally, the TTL should be set to 7.
	

	18
	Hops
	Number of hops the message has passed through. Initially 0. Increased by 1 at each receiver. At all time, TTL+Hops should be the original TTL.
	

	19-22
	Payload length (PL)
	The length of the message's payload immediately following this header. The next message header is located exactly this number of bytes from the end of this header i.e. there are no gaps or pad bytes in the Gnutella data stream. Messages SHOULD NOT be larger than 4 kB. 
	

	23-(22+PL)
	Payload
	 
	Payload


3.3 PING messages (0x00)

Right after connected to the network, or after instructed to by the user, a servent sends a PING message to all its neighbors, that is, all servents connected to it, whether or not the connections are incoming or outgoing. Again, the terms incoming and outgoing are only meaningful technically (who initiated the connection). Other than that, all connections are full-duplex and treated the same way.

A PING message does not have any payload. Thus, PL=0 for a PING message.

Upon receiving a PING message, a servent check to see if it has seen this PING before. If not, the servent forwards it to all neighbors except the neighbor where the PING came from. This is done by maintaining a routing table of up to 160 entries of the most recently received PING messages. Each entry in the table also indicates where (which neighbor) the PING came from. 
3.4 PONG messages (0x01)

A PONG is a response to a PING, and has the same message ID as the PING it responds to. A PONG message is sent back to the neighbor where the PING came from. Up on receiving a PONG, a servent looks up its routing table and forwards the PONG back to the neighbor who sent the corresponding PING.

PONG's payload is 14 bytes long and has the following format:

	Bytes
	Field Name
	Description

	0-1
	Port
	The port and IP address where this servent can accept incoming connections. These are connections for the Gnutella network, not the file downloading connections.

	2-5
	IP address
	

	6-9
	Number of Files Shared
	The number of files that the servent with the given IP address and port is sharing on the network.

	10-13
	Number of Kilobytes Shared
	The number of kilobytes of data that the servent with the given IP address and port is sharing on the network.


3.5 QUERY messages (0x80)

A QUERY's payload has the following format:

	Bytes
	Field Name
	Description

	0-1
	Minimum speed
	The minimum speed (in kb/second) of servents that should respond to this message. A servent receiving a Query message with a Minimum Speed field of n kb/s SHOULD only respond with a Query Hit if it is able to communicate at a speed >= n kb/s. In fact, the semantics of these 16 bits in Gnutella 0.6 are fairly complex. As far as Gnutella is concerned, we just set it to 0.

	2-
	Search string
	This is a null-terminated string containing search text as typed in by the user.


Since Query messages are broadcast to many nodes, the total size of the message SHOULD not be larger than 256 bytes. Servents should drop Query messages larger that 256 bytes, and MUST drop Query messages with payload larger than 4 kB.

QUERYs are forwarded in a similar fashion as PING messages. The only difference is that when a servent gets a new QUERY, it searches its shared files to see if there is any file whose name contains one of the given words. If there is, then the servent replies back (to where the QUERY comes from) with a HIT message. It is entirely up to you if you want to maintain a separate routing table for QUERYs.

3.6 QUERY HIT messages (0x81)

A QUERY HIT is a response to a QUERY if one or more file matches were found. Similar to the PONG case, a QUERY HIT has the same ID as the corresponding QUERY and gets forwarded back to the querier in the same fashion.

Query messages with TTL=1, hops=0 and Search Criteria=" " (four spaces) are used to index all files a host is sharing. Servents SHOULD reply to such queries with all its shared files. Multiple Query Hit messages SHOULD be used if sharing many files.The TTL SHOULD be set to at least the hops value of the corresponding query plus 2, to allow the Query Hit to take a longer route back, if necessary. The TTL value MUST be at least the hops value of the corresponding query, and the initial hops value of the Query Hit message MUST (as usual) be set to 0.

QUERY HIT's payload has the following format:

	Bytes
	Field Name
	Description

	0
	Number of hits
	The number of matched files

	1-2
	Port
	The port and IP address where this servent can accept incoming connections for file downloading. This port is different than the port used for Gnutella network connections. File downloading is to be done based on the HTTP protocol as described later.

	3-6
	IP address
	

	7-10
	Speed
	The speed, in Kbps of the responding host. For now, let's fix this field at 10Mbps = 10,000 Kbps. Note that this is a 32-bit integer to be stored in big-endian format.

	11-
	Result set
	A set of responses to the QUERY. This set contains "number of hits" elements contiguously, each with the following structure:

	
	
	Bytes
	Field Name
	Description

	
	
	0-3
	File Index
	A number, assigned by the responding host, which is used to uniquely identify the file matching the corresponding query.

	
	
	4-7
	File Size
	The size (in bytes) of the file whose index is File Index.

	
	
	8-...
	File Name
	A null-terminated name of the file

	
	
	 

	Last 16
	Servent ID
	A 16-byte string uniquely identifying the responding servent on the network. This SHOULD be constant for all Query Hit messages emitted by a servent and is typically some function of the servent's network address. The servent Identifier is mainly used for routing the PUSH message. Gnutella does not implement the PUSH messages. However, to be interoperable with Gnutella we shall conform to the protocol.


3.7 File transfer

After receiving a QUERY HIT, a servent may elect to initiate the direct download of one of the files in the result set. Files are downloaded out-of-network, i.e. a direct connection between the source and target servent is established in order to perform the data transfer. File data is never transfer over Gnutella network. 

File downloading is recommended to be done via HTTP 1.1. However, HTTP 1.0 can be used instead. For our purposes, the following super-small subset of HTTP1.1 is sufficient. 

The servent initiating the download sends a request string of the following form to the target server:

The servent initiating the download sends a request string on the 

following form to the target server:

GET /get/<File Index>/<File Name> HTTP/1.1\r\n

User-Agent: Gnutella\r\n

Host: 123.123.123.123:6346\r\n

Connection: Keep-Alive\r\n

Range: bytes=0-\r\n

\r\n

where <File Index> and <File Name> are one of the File Index/File Name pairs from a QueryHit message's Result Set. The Host header is required by HTTP 1.1 and specifies what address you have connected to. It is usually not used by the receiving servent, but its presence is required by the protocol. For example, if the Result Set from a QueryHit message contained the entry

File Index: 2468
File Size: 3456789
File Name: Foobar.mp3

then a download request for the file described by this entry would be initiated as follows:

GET /get/2468/Foobar.mp3 HTTP/1.1\r\n

User-Agent: Gnutella\r\n

Host: 123.123.123.123:6346\r\n

Connection: Keep-Alive\r\n

Range: bytes=0-\r\n

\r\n

The servent receiving this download request responds using a HTTP1.1 compliant header such as

HTTP/1.1 200 OK\r\n

Server: Gnutella0.6\r\n

Content-type: application/binary\r\n

Content-length: 3456789\r\n

\r\n

The data file then follows and should be read up to and including the number of bytes specified in the content-length provided in the server's HTTP response.

If the file is not found, then the reply should be of the form 

HTTP/1.1 503 File not found.\r\n

\r\n

