
Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

Gnutella Protocol Development

Home :: Developer :: Press :: Research :: Servents

The Annotated Gnutella Protocol Specification v0.4 (1)

Document Revision 1.6 Clip2
Status: Annotated Standard The Gnutella Developer Forum (GDF)
Based on previous Revision 1.2 http://groups.yahoo.com/group/the_gdf

Summary

Gnutella (2) is a protocol for distributed search. Although the Gnutella protocol supports a traditional
client/centralized server search paradigm, Gnutella’s distinction is its peer-to-peer, decentralized model.
In this model, every client is a server, and vice versa. These so-called Gnutella servents perform tasks
normally associated with both clients and servers. They provide client-side interfaces through which users
can issue queries and view search results, while at the same time they also accept queries from other
servents, check for matches against their local data set, and respond with applicable results. Due to its
distributed nature, a network of servents that implements the Gnutella protocol is highly fault-tolerant, as
operation of the network will not be interrupted if a subset of servents goes offline.

(1)
This document represents the de facto standard Gnutella 0.4 protocol. However, several
implementations have extended the descriptors that comprise the protocol, and have imposed
additional rules on the transmission of these descriptors through the Gnutella network. Known
extensions to the protocol are provided in an Appendix at the end of this document, but some
variations not documented here may be encountered in practice.

(2)

Typically pronounced "new-tella" or, less commonly, "guh-new-tella".

Table of contents

1. Protocol definition
2. Connection procedure and protocol negociation
3. Peer-to-Peer Gnutella packets: Descriptors

3.1.Descriptor Header
3.2.Descriptor Payloads

3.2.1.Ping (0x00) Descriptor Payload
3.2.2.Pong (0x01) Descriptor payload

3.2.2.1.Pong usage policy
3.2.2.2.Port numbers in standard Pong descriptors
3.2.2.3. IPv4 Addresses in standard Pong descriptors

http://rfc-gnutella.sourceforge.net/index.html
http://rfc-gnutella.sourceforge.net/index.html
http://rfc-gnutella.sourceforge.net/developer/index.html
http://rfc-gnutella.sourceforge.net/press/index.html
http://rfc-gnutella.sourceforge.net/research/index.html
http://rfc-gnutella.sourceforge.net/servents/index.html

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

3.2.3.Query (0x80) Descriptor Payload
3.2.4.QueryHits (0x81) Descriptor Payload

3.2.4.1.Result Structure
3.2.4.2.Total Payload length of QueryHits descriptors
3.2.4.3.QHD Data and Result Data Extensions

3.2.5.Push (0x40) Descriptor Payload
3.2.6.Bye (0x02) Extension Descriptor Payload
3.2.7.Query Routing Protocol (0x30) Extension Descriptor Payload
3.2.8.Open-Vendor (0x31) Extension Descriptor Payload
3.2.9.Standard-Vendor (0x32) Extension Descriptor Payload

4. Descriptor routing
5. File downloads
6. Firewalled servents
Appendix: Gnutella protocol extensions

A.1. Extended Query Hit Descriptor (EQHD)

A.1.1. EQHD common format
A.1.2. BearShareTrailer EQHD
A.1.3. Vendor codes

A.2. Extended Result Data extensions

A.2.1. Extended Result structure
A.2.2. Gnotella Result Data extension
A.2.3. LimeWire Meta-Data Result Data extension.
A.2.4. URI Result Data extension and URI Extended Query extension.

1. Protocol Definition

The Gnutella protocol defines the way in which servents communicate over the network. It consists of a
set of descriptors used for communicating data between servents and a set of rules governing the inter-
servent exchange of descriptors. Currently, the following descriptors are defined:

Descriptor Description
Ping Used to actively discover hosts on the network. A servent receiving a Ping

descriptor is expected to respond with one or more Pong descriptors.
Pong The response to a Ping. Includes the address of a connected Gnutella servent and

information regarding the amount of data it is making available to the network.
Query The primary mechanism for searching the distributed network. A servent

receiving a Query descriptor will respond with a QueryHit if a match is found
against its local data set.

QueryHits The response to a Query. This descriptor provides the recipient with enough
information to acquire the data matching the corresponding Query.

Push A mechanism that allows a firewalled servent to contribute file-based data to the
network.

A Gnutella servent connects itself to the network by establishing a connection with another servent
currently on the network. The acquisition of another servent’s address is not part of the protocol definition
and will not be described here (Host cache services are currently the predominant way of automating the
acquisition of Gnutella servent addresses).

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

2. Connection Procedure and Protocol Negociation

Once the address of another servent on the network is obtained (its IPv4 address and its port number), a
TCP connection to the servent is created, and the following Gnutella connection request string (ASCII
encoded) may be sent:

GNUTELLA CONNECT/<protocol version string>\n\n

where <protocol version string> is defined to be the ASCII string "0.4" (or, equivalently, "\x30\x2e\x34")
in this version of the specification, and where "\n" represent an ASCII line-feed character (LF, code
0xa=10).

Note:
Compliant servents MAY accept a CR+LF termination instead of LF+LF, but MUST not generate a
CR+LF terminator when using this 0.4 version of the Gnutella connection protocol.
With the Gnutella protocol, the "GNUTELLA" initial verb is mandatory to avoid collision with
standard or optional HTTP and FTP verbs, and the final token "CONNECT/<protocol version
string>" qualifies BOTH the connection protocol for Gnutella, AND the implicit set of standard
descriptors and their semantics defined by the current protocol specification.
The above string unambiguously defines the first interoperable version of the Gnutella connection
protocol. It MUST be accepted by all Gnutella compatible servents, even if the current version 0.4
of the Gnutella connection protocol has been obsoleted by the version 0.6 which introduces optional
mechanisms comparable to HTTP/1.1.
Deprecated legacy applications using the Gnutella may use another connection string for private
use, but they are not interoperable (if authentication is required to build a private network,
implementors SHOULD use the newer 0.6 version of the Gnutella connection protocol to implement
it with connection headers).

A servent wishing to accept the connection request MUST respond with:

GNUTELLA OK\n\n

Any other response indicates the servent’s unwillingness to accept the connection. A servent may reject an
incoming connection request for a variety of reasons - a servent’s pool of incoming connection slots may
be exhausted, or it may not support the same version of the protocol as the requesting servent, for
example.

If a connection request must be rejected by a Gnutella compliant servent, it MAY use an HTTP-like status
line (starting with a numeric status code such as "404 Not found").

Note:
Compliant servents MAY accept incoming CR+LF termination instead of LF+LF, but MUST not
generate a CR+LF terminator when using this 0.4 version of the Gnutella connection protocol, as
the result is unpredictable, and the protocol would non synchronize properly.
The initial "GNUTELLA" verb before the response avoids collision with HTTP servers.
Some servent implementations respond with "GNUTELLA CONNECT/0.4\n\n", anticipating a
protocol negociation. However, as there was no common standard before the 0.4 protocol, such
specification was not necessary. Servents MAY accept it only for legacy support with previous
versions. This 0.4 version of the protocol does not support protocol version negociation, which has
been introduced in the later 0.6 version of the Gnutella connection protocol defined in another
document.

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

3. Peer-to-Peer Gnutella Packets: Descriptors

Once a servent has connected successfully to the network, it communicates with other servents by sending
and receiving Gnutella protocol descriptors. Each descriptor is preceded by a Descriptor Header with the
byte structure given below.

Note 1:
All fields in the following structures are in little-endian byte order unless otherwise specified.
This is differing from the traditional network-byte-order traditionally used in other networking
protocols, but this has been kept for historical reasons and interoperability with existing Gnutella
servents.
The traditional byte ordering ntoh(), ntol(), hton(), lton() functions used in networking libraries
MUST NOT be used for descriptors as they assume a big-endian byte order for the network
encoding (these functions or macros are no-operation identity only on big-endian machines, such as
Motorola systems, and perform byte swaps on Intel systems). These functions MUST be replaced by
providing functions like nltoh(), nltol(), htonl(), ltonl() assuming little-endianness on the network.

Note 2:
All 32-bit IP addresses in the following structures are in IPv4 format. For example, the IPv4 byte
array:
Byte value 0xD0 0x11 0x32 0x04
Byte offset 0 1 2 3
represents the dotted address IPv4 "208.17.50.4". I.e. network addresses use the standard network
byte-order, defined as big-endian for IPv4.

3.1. Descriptor Header

Fields Descriptor ID Payload
Descriptor TTL Hops Payload

Length
Byte offset 0...15 16 17 18 19...22

Descriptor ID
A 16-byte string uniquely identifying the descriptor on the network. Its value must be
preserved when forwarding messages between servents. Its use allows detection of
cycles and help reduce unnecessary traffic on the network.
When generating 128-bit Descriptor IDs, servents can use the UUID generation
algorithm, or use a cryptographically strong random generator. The value of the
Descriptor ID carries no signification, and should always be treated as an opaque
binary string, whose byte order must be preserved when forwarding messages.
However, within Pong descriptors, which uniquely identifies a servent host identified by
a stable GUID in a more reliable and persistent way than by its current IP and port
number address, a special Pong marking is required for newer applications: byte 8
SHOULD be set to 0xFF (indicating that the GUID unambiguously and uniquely
identifies the servent), and byte 15 SHOULD be set to 0x00 for future use.

Payload Descriptor
0x00 = Ping (see section 3.2.1)
0x01 = Pong (see section 3.2.2)
0x80 = Query (see section 3.2.3)
0x81 = QueryHits (see section 3.2.4)
0x40 = Push (see section 3.2.5)
Extension Descriptors:
0x02 = Bye (see section 3.2.6)

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

0x10 = IBCM (Reserved for the non-standard InBandControlMessage descriptor, but
MAY cause compatibility problem with legacy, non IBCM-aware, servents)
0x30 = QRP (see section 3.2.7)
0x31 = Open Vendor Extension (see section 3.2.8)
0x32 = Standard Vendor Extension (see section 3.2.9)
Note: Other values SHOULD not be used for now, as remote servents may consider it
as invalid. Their use will be specified in an higher version of the protocol than the
current 0.4 protocol (or its 0.6 extension).

TTL
Time To Live. The number of times the descriptor will be forwarded by Gnutella
servents before it is removed from the network.
Each servent MUST decrement the TTL before passing it on to another servent. When
the TTL reaches 0, the descriptor MUST no longer be forwarded.
Note: This field is unsigned, however a value higher than 127 will very probably be
considered as excessive when used on the Internet.

Hops
The number of times the descriptor has been forwarded.
Note: This field is unsigned, however a value higher than 127 will very probably be
considered as excessive when used on the Internet.

As a descriptor is passed from servent to servent, the TTL and Hops fields of the header
MUST satisfy the following conditions:

TTL(i) + Hops(i) = TTL(0)
TTL(i + 1) < TTL(i)
Hops(i + 1) > Hops(i)

where TTL(i) and Hops(i) are the value of the TTL and Hops fields of the header at the
descriptor’s i-th hop, for i >= 0.

Payload Length
The length of the descriptor immediately following this header. The next descriptor
header is located exactly Payload Length bytes from the end of this header i.e. there are
no gaps or pad bytes in the Gnutella data stream.
Note: This field is unsigned however a value of 2GB or more will very probably be
considered as excessive. With the current specification of the protocol, the last encoded
byte of the Payload Length field SHOULD then be 0 (as Payloads won't reach 16MB
when used on the Internet).

The TTL is the only mechanism for expiring descriptors on the network. Servents SHOULD
carefully scrutinize the TTL field of received descriptors and lower them as necessary. Abuse
of the TTL field will lead to an unnecessary amount of network traffic and poor network
performance.

Note:
Some servents MAY consider excessive values for TTL+Hops as indicating
desynchronization of the connection input stream. Also, a descriptor where TTL=0 and
Hops=0 is invalid. All servents MUST consider that TTL+Hops values between 1 and 7
are valid (a higher range is possible but not recommended for use on the Internet). A
servent MAY reduce excessive TTL value, but MUST NOT increase it when forwarding
or caching Descriptors. A servent MUST NOT reduce the Hops value as this will break
the discovery of shorter routes and will affect route caches. When forwarding a
descriptor to remote servents connected with slow or unreliable connections, a servent

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

MAY also count more than 1 Hop and reduce the TTL by the equivalent number,
provided that the resulting TTL value does not reach 0 (in such a case the descriptor
MUST be discarded).

The Payload Length field is the ONLY reliable way for a servent to find the beginning of the
next descriptor in the input stream. The Gnutella protocol does NOT provide an "eye-catcher"
string or any other descriptor synchronization method (it assumes that reliable TCP
connections are used). Therefore, servents SHOULD rigorously validate the Payload Length
field for each descriptor received (at least for fixed-length descriptors). If a servent becomes
out of synch with its input stream, it SHOULD drop the connection associated with the stream
since the upstream servent is either generating, or forwarding, invalid descriptors.

Note:
A desynchronization MAY be detected by the presence of an unknown value for the
Payload Descriptor field in a single descriptor message, which servents are NOT
required to silently discard.
For example, a new Payload Descriptor value has been proposed, the "Bye" descriptor
with value 0x02, which gives the reason why a servent is being disconnected. The
currently defined policy with unknown Payload Descriptors allows this because this
message will not be followed by any other Descriptor, so the connection MAY still be
silently dropped. This is however a proposed extension, whose payload format has still
not been agreed upon among servents implementors. Its specification is not part of this
document, and MAY be documented later.

3.2. Descriptor Payloads

Immediately following the descriptor header, is an optional payload, whose content and
structure depends on the Descriptor Payload field in the descriptor header. The following
sections detail them:

3.2.1. Ping (0x00) Descriptor Payload

Fields Optional Ping Data
Byte offset 0...L-1

Optional Ping Data
This is an optional field consisting in bytes of variable length, it is reserved
for extensions of the current version of the protocol, to specify filters about
expected Pong replies. Its maximum length is bounded by the Payload
Length field of the header.
When used, this field SHOULD be small and agreed upon with other
Gnutella servent implementors, as this field MAY be specified in a further
specification of the protocol.

Standard Ping descriptors currently have no associated payload and are of zero
length. A Ping is simply represented by a descriptor header whose Payload
Descriptor field is 0x00 and whose Payload Length field is 0x00000000.

A servent uses Ping descriptors to actively probe the network for other servents.
A servent receiving a Ping descriptor MAY elect to respond with a Pong
descriptor, which contains the address of an active Gnutella servent (possibly the
one sending the Pong descriptor) and the amount of data it’s sharing on the
network.

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

This specification makes no recommendations as to the frequency at which a
servent SHOULD send Ping descriptors, although servent implementers
SHOULD make every attempt to minimize Ping traffic on the network.

Note:
There's no requirement to always forward any Ping request to other
connected servents or with a large TTL+Hops value. So, most actual
servents implement a traffic limiting policy for Ping descriptors.

3.2.2. Pong (0x01) Descriptor Payload

Fields Port IP
Address

Number of Files
Shared

Number of Kilobytes
Shared

Optional Pong
Data

Byte
offset 0...1 2...5 6...9 10...13 14...L-1

Port
The TCP port number on which the responding host can accept incoming
Gnutella connections. (See section 3.2.2.2 below)

IP Address
The IPv4 address of the responding host. (See section 3.2.2.3 below)
This field is in big-endian format.

Number of Files Shared
The number of files that the servent with the given IP Address and Port is
sharing on the network.
Note: An excessive number of shared files will sometimes be ignored by
servents receiving it, because it is suspect or because cumulating it could
produce internal overflows. This informative field can be null but some
servents have local policies that restrict accesses from "freeloaders" that
don't share a minimum number of files.

Number of Kilobytes Shared
The number of kilobytes of data that the servent with the given IP Address
and Port is sharing on the network.
Note: An excessive total shared size (more than 2GB), or an excessive mean
size per shared file, will sometimes be ignored by servents receiving it
because it is suspect or because cumulating it could produce internal
overflows. This informative field can be null but some servents have local
policies that restrict accesses from "freeloaders" that don't share a
minimum volume of files.

Optional Pong Data
This is an optional field of variable length, it is reserved for extensions of
the current version of the protocol, to give other information about the
servent, or to provide alternate transport protocols or addresses that allow
incoming connections to the servent. Its maximum length is bounded by the
Payload Length field of the header.
When used, this field SHOULD be small and agreed upon with other
Gnutella servent implementors, as this field MAY be specified in a further
specification of the protocol.

Pong descriptors are ONLY sent in response to an incoming Ping descriptor.
Multiple Pong descriptors MAY be sent in response to a single Ping descriptor.
This enables host caches to send cached servent address information in response
to a Ping request.

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

3.2.2.1. Usage policy

1) Fields that SHOULD be preserved from incoming Pongs:
In order to reduce the network traffic used by Pong descriptors and to
discover shorter or alternate routes to the same servent, the Descriptor ID
field of cached Pongs SHOULD be preserved locally along with the Hops
and TTL fields.
However, excessive Hops+TTL values in incoming SHOULD be reduced
by keeping the Hops field. If it has the effect of producing a negative or
null TTL value, the Pong MAY be marked as invalid and be discarded, as
the corresponding advertized servent may be unreachable via the Gnutella
network.

2) Generating the Descriptor Id for Pong descriptors:
The Descriptor Id associated to the payload information of Pong replies
SHOULD be constant for all Ping requests received from the same or
alternate connection, at least as long as the responding servent has an
active connection to the network, unless the servent implements multiple
listening IP interfaces attached to distinct networks, considered as if it was
different servents.
This Descriptor Id SHOULD be globally unique for that server instance. So
its generation should use the UUID algorithm or a cryptographically strong
random generator. However byte 8 SHOULD be set to 0xFF (indicating that
the GUID unambiguously and uniquely identifies the servent), and byte 15
SHOULD be reserved and set to 0x00 for future use.
When receiving or forwarding Pong descriptors, the Descriptor Id field
MUST NOT be modified, whatever its value.

3) Responding to incoming "direct" and "browsing" Ping requests:
Each servent SHOULD respond (at least once for each connected remote
servent) with a valid Pong answer to an incoming "direct" Ping request
with TTL=1 and Hops=0. To allow the implementation of large Pong
caches, they SHOULD also advertize (at least once) with Pong the list of
their currently connected (or recently cached) accessible neighbor servents
in reply to an incoming "browsing" Ping request (with TTL=2 and
Hops=0).

3.2.2.2. Port numbers in standard Pong descriptors

1) Standard and default Port numbers:
Even though Gnutella servents traditionally use TCP Port number 6346 by
default for incoming Gnutella connections, this is NOT a requirement.
There's no "standard" port number defined and servents may use whatever
valid port number between 1 and 65535 they wish for Gnutella TCP
connections to reach the servent.

2) Gnutella Port number and download Port number:
The Port number advertized in Pong descriptors MAY be different from the
port number advertized in QueryHits replies to enable download requests.
Incoming Gnutella connections MAY as well assign the same TCP port for
incoming HTTP connections used by download requests.

3) Non null Port numbers:
A non null Port number indicates support by the servent for incoming
Gnutella TCP connections. Most servents SHOULD provide this field with
a default value for the local host, unless the servent is discovered to be

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

firewalled or manually configured to use an acceptable port.
The 0.4 protocol currently does not specify any procedure to check that the
advertized TCP port number is accessible from other servents or to discover
which port is directed to the local host by the firewall or router.

4) Null Port numbers:
However, if the servent runs on a host whose whose local IP address is on
private LAN and the currently connected Host is on another subnetwork or
on Internet, and if Port number has not been explicitly configured by the
user for that network interface, it is expected that the default Port number
will not be accessible; in that case it MAY be preconfigured to 0.
Servents that receive a null Port number in an incoming Pong SHOULD
discard this Descriptor and not forward it to other servents, as it indicates
that direct Gnutella connection with TCP to the sending host is not
possible.
Note however that the presence of Pong Data may change this behavior, as
it may provide alternate transport protocols (apart from TCP) to connect to
the "firewalled" servent. Such extension is out of scope of the current
specification.

5) Firewalled servents:
A firewalled servent that cannot accept incoming TCP connections
SHOULD set the Port field to 0, if a Pong has to be sent in reply to a
"direct" Ping whose TTL=1 and Hops=0 (this will avoid unsuccessful
attempts by other remote servents to connect to the firewalled servent). The
neighbor servents that accepted the incoming connection from a firewalled
servent and that receives such a Pong is then informed explicitly that the
connected servent does not accept incoming TCP connections, so they need
not later advertize this firewalled servent in the list of servents currently
connected, when answering to an incoming "browsing" Ping (i.e. with
TTL=2).
Note however that the presence of Pong Data may change this behavior, as
it may provide alternate transport protocols (apart from TCP) to connect to
the "firewalled" servent. Such extension is out of scope of the current
specification.

3.2.2.3. IPv4 Addresses in standard Pong descriptors

1) Unroutable IPv4 Addresses:
When sending a Pong descriptor reporting an IPv4 address to a remote
servent, the reported address SHOULD be one that can be safely connected
and is accessible to by this servent.
For example, if the remote servent to which a Pong descriptor is sent is
connected via the global Internet, the local servent SHOULD NOT give him
any private network Addresses (i.e. in the 10/8, 172.16/12, 192.168/16 IPv4
address blocks) that are not routable via the Internet, and SHOULD set this
field to 0. The same rule SHOULD also apply if both servents are
connected via distinct private networks.
If a servent receives such Pongs with unroutable Address from remote
servents on Internet, the address in these Pongs SHOULD be ignored (as if
it was set to 0) even if it matches an accessible address on a local private
network, because the reported servents are not accessible or MAY conflict
with other hosts on a local private network.
When forwarding those Pongs to any other servent, the unroutable Address
field MAY be forced to 0, for example if the other servent is connected

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

from a local private network.
2) Firewalled servents:

A firewalled servent that cannot accept incoming IPv4 connections from the
network (for example the Internet) to which it wants to send Pongs
SHOULD set this field to 0, if a Pong has to be sent in reply to a "direct"
Ping request whose TTL=1 and Hops=0 (this will avoid unsuccessful
attempts by other remote servents to connect to the firewalled servent).
Then, the neighbor servents that accepted the incoming connection from a
firewalled servent and that receives such a Pong is explicitly informed that
the connected servent does not accept incoming connections at an
accessible IPv4 address, so they NEED NOT later advertize this firewalled
servent in the list of servents currently connected, when answering to an
incoming "browsing" Ping (i.e. with TTL+Hops=2).
Note however that the presence of Pong Data extension field may change
this behavior, as Pong Data may provide alternate host addresses (apart
from IPv4) to connect to the servent. Such extension is not described in the
current specification.

3.2.3. Query (0x80) Descriptor Payload

Fields Minimum
Speed

Search Criteria
String

NUL (0x00)
Terminator

(Optional) Query
Data

Byte
offset 0...1 2...N N+1 N+2...L-1

Port
The TCP port number on which the responding host can accept incoming
Gnutella connections.

Minimum Speed
The minimum speed (in kbits/second) of servents that should respond to
this message. A servent receiving a Query descriptor with a Minimum
Speed field of n kb/s SHOULD only respond with a QueryHits if it is able
to communicate at a speed >= n kb/s.

Here are some hints on how this field MAY be set in Query descriptors:

0 = will send results regardless of available upload speed (and even if
there's no available upload slot);
1 = accept any result that can be transferred at a guaranteed
minimum of 1.5 kbps mean speed (i.e. modem servents SHOULD
NOT report hits if they don't have available upload slots or as long as
this would break a guarantee offered to other downloaders, unless
they implement a reliable queueing system);
2 to 32767 = (currently available downlink bandwidth) * 70%.
32768 to 65535 = SHOULD NOT be used in 0.4 Query descriptors.
Unaware legacy servents that receive such Query descriptors will
VERY PROBABLY never return QueryHits.

To determine which uplink speed can be guaranteed, the replying upload
servent MAY compare the Minimum Speed field value n of the Query to:

min[(maximum uplink bandwidth) * 70%, (total unused uplink
bandwidth)]

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

 / [(uploads in progress) + 2]

The restricted range of valid values of the Speed field in QueryHits
descriptors (below 32768), and its typical value is now considered
informative, and more useful information can now be transported in this
Minimum Speed field of Query payloads (See the description of the Speed
field in the QueryHits in section 3.2.4).

Search Criteria String
A NUL (i.e. 0x00) terminated search string. The maximum length of this
string is bounded by the Payload Length field of the descriptor header.
It SHOULD use an ASCII-compatible encoding and charset. In this version
of the protocol, no encoding was specified, but most servents use the ISO-
8859-1 character set, but other encodings such as UTF-8 MAY also be used
(possibly in conjonction with Query Data), as well as other international
character sets (ISO-8859-*, KOI-8, S-JIS, Big5, ...).
It MAY consist in an ASCII SPACE (0x20 = 32) separated list of search
keywords, that MAY optionally be terminated by one or more filename
extensions (after an ASCII dot, 0x2e=46).
For interoperability with future revisions of the 0.4 protocol, the search
Criteria field SHOULD NOT use the ASCII FS separator (0x1c = 28).
Also a Query that contains an empty Search Criteria is valid if it is followed
by the required NUL terminator and by some Query Data (so the Payload
Length cannot be lower than 4 bytes).

Query Data
This is an optional field, of variable length, it is reserved for extensions of
the current version of the protocol. Its maximum length is bounded by the
Payload Length field of the header.
When used, this field SHOULD not be excessively large and agreed upon
with other Gnutella servent implementors, as this field MAY be specified
in a further specification of the protocol.
Popular servent implementations use this field to specify extended search
requests based on meta-data, encoded as a NUL-terminated string
containing additional XML formated search criterias. Other extensions may
follow this second NUL byte.
Servents SHOULD then forward these optional extensions when they are
present.

3.2.4. QueryHits (0x81) Descriptor Payload

Fields Number of
Hits Port IP

Address Speed Result
Set

Optional QHD
Data

Servent
Identifier

Byte
offset 0 1...2 3...6 7...10 11…

10+N 11+N...L-17 L-16...L-1

Number of Hits
The number of query hits in the Result Set field (see below).

Port
The port number on which the responding host can accept incoming
connections.

IP Address
The IPv4 address of the responding host.
This field is in big-endian format.

Speed

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

The maximum upload speed (in kilobits/second or bits/millisecond, between
0 and 32767) of the responding host.
This legacy semantic is deprecating, as this does not guarantee a good
effective upload speed, as this depends on the effective workload of the
host, and its number of available upload slots (so the speed is only
informative and servents should not consider it). As the typical value of this
field is typically low, the most significant bit of this 16-bit field (sent in
little-endian order, as all other Gnutella messages) is now used as a case
selector, that allows sending more useful information:

Legacy format 0 Maximum upload speed in kbit/s

Extended
format 1 Firewalled

indicator

XML
meta-
data

Unassigned
bits,

set to 0

Reserved bits,
set to 0

Bit in Speed
field 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit in byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Byte offset 1 0

When the extended format is used (bit 15 set to 1), the other fields are
defined as below:

Firewalled indicator
This bit is set to 1 in Query and QueryHits payloads, to indicate that the
host emitting the message is firewalled. When both the initial Query source
and the receiver are firewalled, the responding servent should not respond
to the Query, as its QueryHits won't be accessible, even with the Push
mechanism (see section 3.2.5)

XML meta-data
This bit is set to 1 in Query payloads, to indicate the desired preference to
receive extended meta-data for results sent in Query Hits, using the
LimeWire XML format. Only new LimeWire servents honor this bit, and
other servents implementing XML meta-data in their results, should be
changed to honor this bit too. Any servent that can interpret XML meta-
data should set this bit to 1 in its Query to allow receiving them in the
extension field Optional QHD Data (see below). Other servents that cannot
interpret XML meta-data, or servents that do not want to receive them in
Optional QHD Data should clear this bit (see Appendix A.2.3).

Unassigned bits
Currently unassigned, reserved for future use. Until then, these bits should
be set to 0.

Reserved bits
Currently unassigned, reserved for future indication of a maximum number
of hits to return. Until specification, these bits should be set to 0.

Result Set
A set of responses to the corresponding Query. This set contains Number of
Hits elements, each with the Result structure described below (section
3.2.4.1).
The size of the Result Set field (and of each individual Result structure it
contains) is bounded by the size of the Payload Length field in the
descriptor header and by the Number of Hits field, minus the size of the
required Servent Identifier field at end of this payload.

Optional QHD Data
This is an optional field (the Extended QueryHits Data) of variable length,

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

it is reserved for extensions of the current version of the protocol. Its
maximum length is bounded by the Payload Length field of the header. (see
section 3.2.4.3)
When used, this field SHOULD not be excessively large and agreed upon
with other Gnutella servent implementors, as this field MAY be specified in
a further specification of the protocol.
Some servents use this field to give other collected information about the
Query or about the responding host.
Servents SHOULD then forward these optional extensions when they are
present. (see Annexes)

Servent Identifier
This 16-byte string uniquely identifies the responding servent on the
network. This is typically some function of the servent’s network address.
The Servent Identifier is instrumental in the operation of the Push descriptor
(see below).

QueryHits descriptors are only sent in response to an incoming Query descriptor.
A servent should only reply to a Query with a QueryHits descriptor if it contains
data that strictly meets the Query Search Criteria.

A QueryHits descriptor SHOULD be initially generated with Hops=0 and the TTL
field equal to the number of Hops traversed by the Query descriptor for which it is
replies.

The Descriptor Id field in the descriptor header of the QueryHits should contain
the same value as that of the associated Query descriptor. This allows a servent to
identify the QueryHits descriptors associated with Query descriptors it generated.

3.2.4.1. Result Structure

Fields File
Index

File
Size

Shared File
Name

NUL (0x0)
Terminator

Optional
Result Data

NUL (0x0)
Terminator

Byte
offset 0...3 4...7 8...7+K 8+K 9+K...R-2 R-1

File Index
A number, assigned by the responding host, which is used to uniquely
identify the file matching the corresponding query.

File Size
The size (in bytes) of the file whose index is File Index.

Shared File Name
The nul (i.e. 0x0000) terminated shared name of the file whose index is File
Index.

Optional Result Data
Nul (i.e. 0x0000) terminated data about the file whose index is File Index.
Some servents MAY use this field to return meta-data, encoded with XML.
Care MUST be taken not to include any NUL byte in this field.
A text-only extension (some as XML data) in this field SHOULD be
terminated by an ASCII File Separator (FS, 0x1c=28) if there is another
extension after it.
When this field is not used, the second NUL terminator MUST still be
present.

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

3.2.4.2. Total Payload length of QueryHits descriptors.

The QueryHits descriptor, with its complex structure, is the one which may have
the longest payload. For efficiency and to allow more concurrent requests, a
servent that receives a Query SHOULD limit the volume of the QueryHits
descriptor it sends as a reply. When many hits are detected, servents MAY and
SHOULD divide it in reasonable subsets, with a delay between each QueryHits
descriptor sent back to the requester.

Any QueryHits descriptor SHOULD NOT need more than 4 seconds to transmit
at an average speed per connection of 4kbps, because the servent needs to be able
to reply to other incoming requests from its connected neighbors in a timely way.
In practice, this limits the total descriptor size to 2KB, unless more uplink
bandwidth is available, and if there's agreement (or negociation at connection
time) about the maximum descriptor size that can be used between neighbor
servents. This can only be guaranteed if replying with a TTL=1 descriptor, which
explicitly won't need to be routed across relaying servents, and which has greater
priority than other descriptors with larger TTL values.

When a servent replies to an incoming Query descriptor with Hops>0, the
QueryHits descriptor with TTL>1 will return back to the initial servent that sent
the Query, using the same connection path that was used when receiving the
Query. Most neighbor servents will forward incoming QueryHits descriptors (with
TTL>1) without breaking them into their individual components. Buffer size limits
in relaying servents MAY impact the intended descriptor, as a relaying agent
MAY drop a too long QueryHits descriptor.

All servents SHOULD be able to route QueryHits descriptors with total size
(including the descriptor header) up to 2KB. And servents SHOULD NOT
generate any QueryHits descriptor with more than 64KB total size, unless there's
mutual agreement that such large descriptors can be safely exchanged. Between
these figures, the maximum descriptor size CAN be reduced in an order of
magnitude proportional to the increase of the TTL+Hops value.

3.2.4.3. QHD Data and Result Data Extensions

The QueryHits descriptor allows two kinds of extensions, either per Result or for
the whole Result-Set. The choice of placement of these extensions (and their
encoding and semantics) is not defined in this document; it's up to the
implementers of servents to define and test them, however several things should
be noted:

Important notice: This section gives some guidelines, but the "SHOULD" and
"MAY" words found here are still being debated, particularly for the semantics of
cachable extensions that could be splitted or merged by future Query-caching
relaying servents.

1) Extensions encoding:
There MAY be several Result Data extensions for the same Result file. And
there may be several QHD Data extensions for the same QueryHits
descriptor.
Some extensions are also versatile, i.e. they MAY be used in descriptors
with different Payload type.
So each extension MUST start with a distinct identifiable sequence to

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

recognize its type. The following paragraphs give examples for
interoperability of some existing extensions.

1.a) XML extensions
start with a ASCII "<" character (0x3c=60), which is part of its actual
content and can be a comment, a document type declaration, or the
beginning of the document element; an XML extension is terminated by a
ASCII FS character if followed by another extension.
Standard XML data uses the UTF-8 encoding by default, but MAY use
other explicit encodings. For interoperability, implementers of XML
extensions SHOULD produce XML data using an explicit default target
namespace and/or a distinctive document element name. Full XML
conformance is not required, and relaying servents don't need to validate
them.

1.b) URN extensions
start with a ASCII lowercase "u" letter (0x75=117), part of its value, and
terminated by a ASCII FS, if followed by another extension.

1.c) Sets of GGEP binary-delimited extensions
(not specified here) are introduced by a magic byte (0xc3=195), and each
extension in the set contains a length indicator and an extension-specific
signature; however no byte in the GGEP binary-delimited extension may
be NUL (0x00) when encoded within a Result Data field (this MAY use a
special binary encoding). The whole set of GGEP-compatible binary
extensions is terminated by a ASCII FS if followed by another extension.

1.d) BearShareTrailer-type binary extensions
(see Appendix 1) start with a vendor-specific Identifier of 4 ASCII
characters (it SHOULD not start by a "<", "u" or 0xc3 byte) and specify
their internal data length. Such binary extensions are not designed to be
used in a Result Data extension field, but only in QHD Data extension. For
newer applications, GGEP-style extensions SHOULD be preferred.

2) When to use QHD Data extensions:
Servents MAY need to split a large incoming result-set into several distinct
QueryHits descriptors, each one transmitted after a time delay, to better
manage its outgoing bandwidth and allow responding to other requests.
When it needs to do so, it MAY transmit the QHD Data separately in an
empty or tiny result set, or MAY have to repeat the QHD Data in each
QueryHits descriptors. Servents that send large QHD Data SHOULD
design their extension in such a way that this data MAY be transmitted
separately (however with the same responding Servent Identifier field), or
so that this data MAY be repeated in multiple Query Hits.
So any meta-data associated with a single file would better not be within
this QHD Data extension field, and the QHD Data will only be best used
either with single-file Results Set, or to transport small servent-related
information.
Also QHD data cannot be parsed without first receiving and parsing the
Result Set, because there's no length indicator for the Result Set: each Result
structure must be scanned while counting them, until Number of Hits have
been scanned. For faster routing purpose, a servent MAY also need to limit
the Number of Hits allowed in the same Result Set.
Servents SHOULD also avoid transmitting QueryHit descriptors with
empty Result Set in order to send only QHD Data extensions, as some
legacy servents MAY discard such empty descriptors.
The 0.4 protocol does not specify however that an empty Result Set is

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

invalid. So, new servents SHOULD accept and forward QueryHits
descriptors containing an empty Result Set if it contains QHD Data
extension.
Finally, all servents SHOULD discard QueryHits descriptors with both
empty Result Set (i.e. Number of Hits=0) and no QHD Data extension (i.e.
PayLoad Length<=27).

3) When to use Result Data extensions:
To avoid such split of related information, meta-data can be encoded, along
with the Result with which it is related, within the Result Data extension.
However, pure binary format for these extensions is not possible as Result
Data extensions MUST NOT contain NUL bytes; additionally it SHOULD
NOT contain the ASCII File Separator (FS, 0x1c = 28) used to terminate
text-only extensions with no explicit length. This MAY then require a less
efficient (larger) encoding for such meta data within the Result Data
extension field of a Result structure.
Using a Result Set with several combined hits saves a little output
bandwidth when we compare it to the bandwidth needed when using an
equivalent splitted Result Set, because of the headers overhead. However
servents SHOULD avoid using descriptors with excessive length, as it may
cause buffering problems in remote servents.

4) When to anticipate splitted QueryHits:
If a QueryHits extension is large then it SHOULD be carefully designed to
differentiate servent-related information from files-specific meta-data.
Servent-related information SHOULD not be sent within multiple
QueryHits descriptor associated with the same Query request (identified by
the matching Descriptor ID field in the descriptor header), but only with the
first Result Set for that Query. It SHOULD be encoded as a QHD Data
extension, and this first Result Set MAY need to be reduced to contain the
smallest Result structures.
Large file-related meta-data MAY be encoded as a QHD Data extension
instead of a Result Data extension to allow better encoding. In such a case,
the Result Set MAY need to be reduced to contain only one Result
structure.
A QHD Data extension MAY be designed to include a vector of file-
related meta-data, one for each file of the Result Set. However as a Result
Set MAY be splitted by relaying agents, with QHD Data extensions
replicated in each QueryHits descriptor, it would be difficult to reassociate
the meta-data with the correct file. In that case, the extension may include
the File Id within each element of the vector encoded in the QHD Data
extension.
Until the semantics of splitting (or merging) a Result Set are standardized in
a future version of this specification, servents need to be carefully tested
with other popular implementations, to determine the appropriate policy, as
it MAY break the behavior of an existing extension (for example if
QueryHits are digitally signed)

3.2.5. Push (0x40) Descriptor Payload

Fields Servent Identifier File Index IP Address Port Optional Push Data
Byte offset 0...15 16...19 20...23 24...25 26...L-1

Servent Identifier
The 16-byte string uniquely identifying the servent on the network who is

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

being requested to push the file with index File Index. The servent initiating
the push request should set this field to the Servent Identifier returned in the
corresponding QueryHits descriptor. This allows the recipient of a Push
request to determine whether or not it is the target of that request.

File Index
The index uniquely identifying the file to be pushed from the target servent.
The servent initiating the Push request should set this field to the value of
one of the File Index fields from the Result Set field in the corresponding
QueryHits descriptor.

IP Address
The IP address of the host to which the file with File Index should be
pushed. This field is in big-endian format.

Port
The port to which the file with index File Index should be pushed.

Optional Push Data
This is an optional field of variable length, it is reserved for extensions of
the current version of the protocol, to give identifying information about
the content to push, or routing and authenticating information collected
from previous QueryHits and/or Pong descriptor. Its maximum length is
bounded by the Payload Length field of the descriptor header.
When used, this field SHOULD not be excessively large and agreed upon
with other Gnutella servent implementors, as this field MAY be specified
in a further specification of the protocol.
Servents SHOULD then forward these optional extensions when they are
present.

A servent may send a Push descriptor if it receives a QueryHit descriptor from a
servent that doesn’t support incoming connections. This might occur when the
servent sending the QueryHits descriptor is behind a firewall. When a servent
receives a Push descriptor, it may act upon the push request if and only if the
Servent Identifier field contains the value of its servent identifier.

The Descriptor Id field in the Descriptor Header of the Push descriptor should not
contain the same value as that of the associated QueryHits descriptor, but should
contain a new value generated by the servent’s Descriptor_Id generation
algorithm. See the section below entitled "Firewalled Servents" for further details
on the Push process.

3.2.6. QRP (0x30) Extension Descriptor Payload

Fields Quary Routing Table Data
Byte offset 0...L-1

Query Routing Table Data
This is a required field consisting in bytes of variable length, it is reserved
for extensions of the current version of the protocol, to send compact
information about files shared by a servent, in order for the recipient to
filter incoming Queries.
This field can be large, but the descriptor should be compacted with an
algorithm not specified in this document..

This descriptor was not specified in the original 0.4 protocol. Implementing it in
servents is optional (but sending it is required to implement the "Leaf node" mode

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

specified in the UltraPeer extension. It should be sent only to servents
implementing the UltraPeer protocol, as indicated in their connection headers.
Non-QRP aware servents MAY safely ignore this descriptor, as it is completely
compatible with all non QRP-aware 0.4 servents that don't use it.

The routing of this descriptor is not defined in this document. Its presence in a
reception flow indicates that the recipient should support the QRP mechanism,
most probably to implement the UltraPeer topology extension. Its occurrence in a
flow sent by a given servent should be paced according to the QRP protocol
extension that defines it. Generally, this message is not intended to be dropped by
the recipient. So receiving it while it was not solicited indicates that the servent
does not comply strictly to this specification but already implements a part of the
QRP extension, but does not comply to its specification.

3.2.7. Bye (0x02) Extension Descriptor Payload

Fields Optional Bye Data
Byte offset 0...L-1

Optional Bye Data
This is an optional field consisting in bytes of variable length, it is reserved
for extensions of the current version of the protocol, to specify filters about
expected Pong replies. Its maximum length is bounded by the Payload
Length field of the header.
When used, this field SHOULD be small and agreed upon with other
Gnutella servent implementors, as this field MAY be specified in a further
specification of the protocol.

This descriptor was not specified in the original 0.4 protocol. Implementing it in
servents is optional. Servents MAY safely ignore this descriptor, as it is
completely compatible with all non Bye-aware 0.4 servents.

However a Bye-aware servent MUST set TTL=1 and Hops=0 when sending this
descriptor, then it SHOULD NOT send or forward any other descriptor on the
same connection path; instead it MAY wait for about 30 seconds that the
connection closes (if timeout elapses, it SHOULD close the connection). During
that period, the servent MAY ignore all other incoming descriptors coming from
the same connection path (with the exception of another incoming Bye Descriptor
which MAY be interpreted). The semantic of an sending a Bye descriptor with
Hops<>0 is unknown and not defined in this document.

On reception, a Bye-aware servent MUST NOT forward this message; it MAY
interpret the Payload to take further actions, but it SHOULD disconnect
immediately from the servent which sent this descriptor. The content of the
Payload is not specified in this version of the protocol (it will typically contain a
NUL terminated status line that gives the reason why a servent will be
disconnected, and other Optional Bye Data extensions).

3.2.7. Open-Vendor (0x31) Extension Descriptor Payload

Fields Vendor
ID

Sub-
Selector

Optional Sub-Selector
Version

Optional Vendor Sub-
Selector Data

Byte

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

offset 0...3 4...5 6...7 6...L-1

Vendor ID
Case insensitive sequence of 4 characters, identifying the vendor who has
authority on the descriptor format and its definition. Vendor ID values are
similar to those used in QueryHits (See Appendix 1). The all-zero value is
reserved for Vendor support requests and answers. See below.

Sub-Selector
A little-endian 16-bit value specifying a distinct message type defined by
that vendor. The 0xFFFF and 0xFFFE values for the Sub-Selector field are
reserved for feature request and answers. See below.

Optional Sub-Selector Version
A little-endian 16-bit value specifying a variant for the distinct message
type defined by that vendor. The 0x0000 value is assumed if absent. Some
Sub-Selectors will be versioned and some won't. The value 0x0001
represents version 0.1.

Optional Vendor Sub-Selector Data
This is an optional field consisting in bytes of variable length. Its format
depends on the Vendor ID, Sub-Selector and Optional Sub-Selector Version
fields. Its maximum length is bounded by the Payload Length field of the
header.

This descriptor was not specified in the original 0.4 protocol. Implementing it in
servents is optional. It allows servents to send experimental messages, and test
their scalability and routing strategies for networking enhancements without
breaking other existing servent implementations.

However servents that implement this descriptor SHOULD also implement the
Open-Vendor Feature request/answer 0.1 mechanism. See below.

Non-aware servents MAY safely ignore this descriptor, as it should be
completely compatible with all non-Vendor aware 0.4 servents.

However a Open-Vendor-aware servent SHOULD set TTL=1 and Hops=0 when
sending this descriptor. In that case, the Descriptor ID field may be used for other
usage than identifying the uniqueness of the originator. The semantic of sending a
Open-Vendor descriptor with TTL>1, or forwarding it with Hops<>0 is unknown
and not defined in this document.

The maximum size of this Descriptor should be below 20 KB for routing purpose,
and MUST NOT exceed 64KB with TTL=1 and Hops=0.

On reception, a non-aware servent MUST NOT blindly forward this descriptor; it
MAY interpret the Payload to take further actions. The content of the Payload is
not specified in this version of the protocol, as it is vendor-specific, and may
change over time.

Querying the list if Vendor ID supported in Open-Vendor descriptors:
One servent A can query which Vendor IDs the remote servent B support:
it sends an Open-Vendor descriptor with the Vendor ID field set to all-
zeroes, and sets the Sub-Selector field to 0xFFFF and Version field to
0x0001. If B supports some Open-Vendor descriptors, it will answer by
sending back another Open-Vendor descriptor with the Vendor ID field set
to all-zeroes, and the Sub-Selector field set to 0xFFFE, and the Optional

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

Sub-Selector version field set to 0x0001; the Optional Vendor Sub-Selector
Data field will contain the list of Vendor IDs supported.

Querying if one or more specific Vendor ID are supported in Open-Vendor
descriptors:

This uses the same mechanism, unless that the servent A will insert one or
more Vendor ID values in the Optional Vendor Sub-Selector Data field.
The servent B will reply by listing only those Vendor IDs values that are
supported in the requested set. If B does not support any of these value, it
can explicitly reply with an empty list of Vendor ID values in the Optional
Vendor Sub-Selector Data field of its answer. This type of request allows
restricting the volume of data exchanged between servents because the
servent B may support a large set of Vendor-specific extensions.

Querying the list of Open-Vendor Sub-selectors supported for a specific Vendor
ID:

One servent A can query which Sub-Selectors the remote servent B
support: it sends an Open-Vendor descriptor with the Vendor ID field set
according to the Sub-Selectors to query, and sets the Sub-Selector field to
0xFFFF and Version field to 0x0001. If B supports Open-Vendor
descriptors for that Vendor ID, it will answer by sending back another
Open-Vendor descriptor with that same Vendor ID, and the Sub-Selector
field set to 0xFFFE, and the Optional Sub-Selector version field set to
0X0001; the Optional Vendor Sub-Selector Data field will contain the list
of Sub-Selectors supported with that Vendor ID.
A more precise query that takes version fields or identification fields into
account may be used with Sub-Selector Version field set to 0x0002, in the
0xFFFF "Feature Query" Sub-Selector, or in the 0xFFFE "Feature Answer"
Sub-Selector. In that case, each Sub-Selector value listed in the Optional
Vendor Sub-Selector Data field will be followed by a length byte and the
version information.

3.2.8. Standard-Vendor (0x32) Extension Descriptor Payload

Fields Vendor
ID

Sub-
Selector

Optional Sub-Selector
Version

Optional Vendor Sub-
Selector Data

Byte
offset 0...3 4...5 6...7 6...L-1

The structure of this descriptor is completely identical to the structure of the 0x31
descriptor type. In fact it is highly recommended that servents that implement any
0x32 descriptor also accepts receiving its 0x31 experimental variant with exactly
the same Payload. The feature query mechanism can also be used to see if a
legacy servent supports the approved 0x32 variant. However a servent that
implements the approved 0x32 variant should no more reply with the
experimental 0x31 variant of the descriptor.

This descriptor was not specified in the original 0.4 protocol. Implementing it in
servents is optional. It allows servents to send experimental vendor-specific
messages, for networking enhancements without breaking other existing servent
implementations, but it restricts its definition to a stable and documented
specification. Experimental Open-Vendor 0x31 descriptors may be safely ignored,
but detecting a Standard-Vendor 0x32 message gives a hint to the implementor
about which Open-Vendor descriptor they should monitor and implement in their
next releases as per the available specification.

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

This descriptor may have special routing strategies. In that case, this descriptor
MUST be sent with TTL=1 and Hops=0, and its unique 128-bit Descriptor ID
MAY be used for other purpose. If the Standard-Vendor descriptor uses a
standard forwarding strategy, it should include a unique 128-bit Descriptor ID
which MUST be preserved while incrementing the Hops field and decrementing
the TTL field. Implementing effectively an Standard-Vendor descriptor MAY
require complex caching strategies. For testing purposes, and to limit the impact
of possible bugs, all tests SHOULD be performed using the Experimental Open-
Vendor descriptors, so that it won't harm other conforming servents.

Only when the implementation passes the specification compliance tests with
other major servent implementations present on the network that implement this
Open-Vendor message, the implementor SHOULD replace any occurence of
experimental 0x31 descriptors for that Vendor ID and Sub-Selector by 0x32
descriptors in requests and in replies to incoming approved 0x32 descriptors.
Going to the Standard-Vendor state will allow more reachability of this Open-
Vendor descriptor on the network.

When answering to an incoming Open-Vendor 0x31 descriptor, Standard-Vendor
0x32 descriptors MUST NOT be used, whatever its content, unless the incoming
Vendor ID matches the receiving servent implementation and the receiving
servent is fully compliant to the Standard-Vendor descriptor specification.

When answering to an incoming Standard-Vendor 0x32 descriptor, Open-Vendor
0x31 descriptors SHOULD NOT be used, other Standard-Vendor 0x32
descriptors SHOULD be used instead. Other type of answers MAY include other
descriptors such as Ping, Pong, Query, QueryHits, Push and Bye, or any other
action defined in the Standard-Vendor descriptor.

4. Descriptor Routing

The peer-to-peer nature of the Gnutella network REQUIRES servents to route network traffic (queries,
query replies, push requests, etc.) appropriately. A well-behaved Gnutella servent MUST route protocol
descriptors according to the following rules:

1. Pong descriptors MAY ONLY be sent along the same path that carried the incoming Ping
descriptor. This ensures that only those servents that routed the Ping descriptor will see the Pong
descriptor in response. A servent that receives a Pong descriptor with Descriptor ID = n, but has not
seen a Ping descriptor with Descriptor ID = n SHOULD remove the Pong descriptor from the
network and not forward it to any connected servent.

2. QueryHit descriptors MAY ONLY be sent along the same path that carried the incoming Query
descriptor. This ensures that only those servents that routed the Query descriptor will see the
QueryHit descriptor in response. A servent that receives a QueryHit descriptor with Descriptor ID =
n, but has not seen a Query descriptor with Descriptor ID = n SHOULD remove the QueryHit
descriptor from the network.

3. Push descriptors MAY ONLY be sent along the same path that carried the incoming QueryHit
descriptor. This ensures that only those servents that routed the QueryHit descriptor will see the Push
descriptor. A servent that receives a Push descriptor with Servent Identifier = n, but has not seen a
QueryHit descriptor with Servent Identifier = n SHOULD remove the Push descriptor from the
network. Push descriptors MUST be routed by Servent Identifier, not by Descriptor Id (this id is not
related to the Descriptor Id of any Query or Query Hit descriptor, it is used only to identify the push
request when the uploader servent will try to connect to the downloader, so it MAY be related to the

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

local servent GUID that initiates the Push descriptor).
4. A servent SHOULD forward incoming Ping and Query descriptors to ALL of its directly connected

servents, except the one that delivered the incoming Ping or Query.
5. A servent MUST decrement a descriptor header’s TTL field, and increment its Hops field, before it

forwards the descriptor to any directly connected servent. If, after decrementing the header’s TTL
field, the TTL field is found to be zero, the descriptor is not forwarded along any connection.

6. A servent receiving a descriptor with the same Payload Descriptor and Descriptor ID as one it
has received before, SHOULD attempt to avoid forwarding the descriptor to any connected servent.
Its intended recipients have already received such a descriptor, and sending it again merely wastes
network bandwidth.

Example 1. Ping/Pong routing, with duplicate descriptors filtering

Example 2. Query/QueryHit/Push routing

5. File Downloads

Once a servent receives a QueryHit descriptor, it may initiate the direct download of one of the files
described by the descriptor’s Result Set. Files are downloaded out-of-network i.e. a direct connection
between the source and target servent is established in order to perform the data transfer. File data is never
transferred over the Gnutella network.

The file download protocol is HTTP.

Important note: This document is not normative as regard to the HTTP protocol. It only
defines the minimum HTTP support REQUIRED to implement compliant servents. Any

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

compliant HTTP/1.0 or HTTP/1.1 client or server MAY be used. For further reference, please
consult:
[1] RFC 2616 "Hypertext Transport Protocol - HTTP/1.1", by Irvine, Gettys, Compaq, W3C,
MIT & al. (2nd release, June 1999), Standard Track, edited by W3C, available in HTML
format on http://www.w3.org/Protocols/rfc2616/rfc2616.html
This version obsoletes the previous:
[2] RFC 2068 "Hypertext Transport Protocol - HTTP/1.1", by Fielding, Irvine, MIT & al. (1st

release, January 1997), Proposed Standard, edited by IETF.
[3]RFC 1945 "Hypertext Transport Protocol - HTTP/1.0", by Berners-Lee, Fielding, Frystyk
& MIT/LCS (May 1996), Informational, edited by IESG, available in ASCII text format on
http://www.ietf.org/rfc/rfc1945.txt

The servent initiating the download sends a HTTP request string of the following form to the target server:

GET /get/<File Index>/<File Name>/ HTTP/1.0\r\n
User-Agent: Gnutella/0.4\r\n (3)
Range: bytes=<Start Offset>-\r\n
Connection: Keep-Alive\r\n
\r\n

where <File Index> and <File Name> are one of the File Index/File Name pairs from a QueryHits
descriptor’s Result Set. For example, if the Result Set from a QueryHits descriptor contained the following
Result entry:

File Index 2468
File Size 4356789
File Name Foobar.mp3\x00
Result Data \x00

then a download request for the file described by this entry would be initiated as follows:

GET /get/2468/Foobar.mp3/ HTTP/1.0\r\n
User-Agent: Gnutella/0.4\r\n (3)
Range: bytes=0-\r\n
Connection: Keep-Alive\r\n
\r\n

Note that some characters (such as spaces) in the filename may need to be encoded with %hh
hexadecimal sequences to comply with the URI standard referred by the HTTP protocol
standard.

Note also that the incoming HTTP version MAY be 1.1 instead of 1.0. Support for HTTP/1.1 is
not mandatory within servents, which can still respond with the HTTP/1.0 protocol.

The "Connection: Keep-Alive" header MAY also be omitted in HTTP/1.0, but SHOULD be
present in HTTP/1.1. The "Range:" header MAY also be omitted if the request specifies the
full file content. Note also the double CRLF sequence required at end of headers, when
emitting and parsing HTTP request headers.

The server receiving this download request responds with HTTP 1.0 compliant headers such as:

HTTP/1.0 200 OK\r\n
Server: Gnutella/0.4\r\n (3)
Content-Type: application/binary\r\n
Content-Length: 4356789\r\n
\r\n

Note that some legacy servents may also respond with a different status line (before the HTTP

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ietf.org/rfc/rfc1945.txt

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

headers), which does not fully comply to the HTTP 1.0 or 0.9 standard, but to a very
deprecated legacy standard, as they may omit the version suffix (this is a consequence of an
error in the previous revision of this document) :

HTTP 200 OK\r\n

Note also that the "Content-Type:" header may also be missing on incoming requests, but all
servents SHOULD emit it when uploading files, for compatibility with some HTTP proxies.
Note also the double CRLF sequence required at end of headers, when emitting and parsing
HTTP answer headers.

The file data then follows and should be read up to, and including, the number of bytes specified in the
"Content-Length:" provided in the server’s HTTP response.

Note that if there's no "Content-Length:" specified, the downloading servent has no other
choice than HAVING TO read the file data up to the detection of the end of the TCP
connection, and abort the download if there's a file size mismatch. So all servents SHALL
include this header.

The Gnutella protocol provides support for the HTTP "Range:" parameter, so that interrupted downloads
may be resumed at the point at which they terminated.

If the connection does not terminate immediately when the download completes, the
downloading servent MAY initiate another "Range:" download by emitting another HTTP
GET request for the same file (the uploading servent MAY elect not to honor it and return an
HTTP BUSY error).

Once the HTTP transactions are finished or if the uploading server returns any error, the
downloading client SHOULD immediately close the connection. A fast uploading servent
SHOULD keep the connection open for a limited time before forcing the connection close
(this will avoid exhaustion of available socket system control blocks on fast servents that
accept many incoming requests).

6. Firewalled Servents

It is not always possible to establish a direct connection to a Gnutella servent in an attempt to initiate a
file download. The servent may, for example, be behind a firewall that does not permit incoming
connections to its Gnutella port. If a direct connection cannot be established, the servent attempting the
file download may request that the servent sharing the file "push" the file instead. A servent can request a
file push by routing a Push request back to the servent that sent the QueryHit descriptor describing the
target file. The servent that is the target of the Push request (identified by the Servent Identifier field of the
Push descriptor) should, upon receipt of the Push descriptor, attempt to establish a new TCP/IP connection
to the requesting servent (identified by the IP Address and Port fields of the Push descriptor). If this direct
connection cannot be established, then it is likely that the servent that issued the Push request is itself
behind a firewall. In this case, file transfer cannot take place.

If a direct connection can be established from the firewalled servent to the servent that initiated the Push
request, the firewalled servent should immediately send the following:

GIV <File Index>:<Servent Identifier>/<File Name>\n\n

Where <File Index> and <Servent Identifier> are the values of the File Index and Servent Identifier fields
respectively from the Push request received, and <File Name> is the name of the file in the local file
table whose file index number is <File Index>. The servent receiving the GIV request header (i.e. the Push

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

requester) should extract the <File Index> and <File Name> fields from the header and construct an
HTTP GET request of the following form:

GET /get/<File Index>/<File Name>/ HTTP/1.0\r\n
User-Agent: Gnutella/0.4\r\n (3)
Range: bytes=0-\r\n
Connection: Keep-Alive\r\n
\r\n

The remainder of the file download process is identical to that described in the section entitled "File
Downloads" above.

(3)
The allowable values of the User-Agent string are defined by the HTTP standard. Servent
developers cannot make any assumptions about the value here. The use of ‘Gnutella’ is for
illustration purposes only.

Appendix: Gnutella Protocol Extensions

A.1. Extended Query Hit Descriptor (EQHD)

(Description Updated 03/15/2001)

A.1.1. EQHD common format

First introduced by BearShare v1.3.0, the Extended QueryHits Descriptor extends
the original Gnutella QueryHits descriptor by placing extra data between the last
double-nul terminated filename of the Result Set and the Servent Identifier. An
Extended QueryHit descriptor (0x81) will have the following payload structure:

Fields Number of
Hits Port IP

Address Speed Result
Set

Optional QHD
Data

Servent
Identifier

Byte
offset 0 1...2 3...6 7...10 11…N N+1...L-17 L-16...L-1

One way for developers to handle the QHD Data extensions is to

1) Be aware that an incoming QueryHits descriptor may or may not contain
additional data after the Result Set and before the Servent Identifier. No complete
specification exists for the number of bytes that may be present, or their content.
Use the Payload Length field and count bytes as they are read from the stream to
determine whether the extension bytes are present.

2) If they are, read them from the stream, leaving 16 bytes for the Servent
Identifier.

3) Process the QueryHit as usual.

A.1.2. BearShareTrailer EQHD

The BearShareTrailer field stored in the Optional QHD Data field has the
following structure:

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

Fields
Trailer
Vendor
Code

Open
Data
Size

Open
Data

Optional
Private
Data

Optional
Signature Binary

Data

Optional
Signature

Size
Byte
offset 0...3 4...5 6...6+n-

1
6+n...L-17-

N-(s+1)
L-17-N-s...L-17-

N-1 L-17-N

Vendor Code
Four case-insensitive characters representing a vendor code. (Some
recognized vendor codes are listed in section A.1.3).

Open Data Size
Contains the length (in bytes) of the Open Data field.

Open Data
Contains two 1-byte flags fields with the following layout and in the
specified order:

Fields Flag1 Flag2 Optional XML Data
Length

Optional XML
Data

Optional Vendor
Data

Byte
offset 0 1 2...3 4...4+s-1 4+s...n-1

Flag1
flags r r r setUploadSpeed setHaveUploaded setBusy r flagPush
Bit

number 7 6 5 4 3 2 1 0

setUploadSpeed = 1 if and only if the flagUploadSpeed flag in the
Flags2 field is meaningful.
setHaveUploaded = 1 if and only if the flagUploaded flag in the
Flags2 field is meaningful.
setBusy = 1 if and only if the flagBusy flag in the Flags2 field is
meaningful.
flagPush = 1 if and only if the servent is firewalled or has not yet
accepted an incoming connection.
r = reserved for future use.

Flags2
flags r r r flagUploadSpeed flagHaveUploaded flagBusy r setPush
Bit

number 7 6 5 4 3 2 1 0

flagUploadSpeed = 1 if and only if the Speed field of the QueryHits
descriptor contains the highest average transfer rate (in kilobits per
second) of the last 10 uploads.
flagHaveUploaded = 1 if and only if the servent has successfully
uploaded at least one file.
flagBusy = 1 if and only if the all of the servent’s upload slots are
currently full.
setPush = 1 if and only if the flagPush flag in the Flags1 field is
meaningful.
r = reserved for future use.

Optional XML Data Length
This little-endian 16-bit field, introduced in LimeWire 1.8 and later,
includes the length of the Optional XML Data field that may follow
it. It must be set to 0 if no XML Data is used but other Optional
Vendor Data must be used.

Optional XML Data

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

This optional field contains XML encoded meta-data for the files
referred to by the Result structures of the QueryHits. The presence of
textual XML can be inferred to by the leading byte which SHOULD
be an ASCII "<" for an XML declaration, comment or root element.
A leading non-printable ASCII character implies that the field is not
encoded with textual XML, but uses some other binary format.

Optional Vendor Data
This optional field other vendor-specific data for the QueryHits
Descriptor. It may use binary format and it is bound by the Value of
the Open Data Size field. This vendor-specific field is deprecated in
favor of set of GGEP-style extensions in the Optional Private Data
field described below.

Optional Private Data
Undocumented BearShare-specific data. The length of this field can be
determined as follows:

<QueryHit Descriptor Payload Size> - (<Open Data Size> + 4 +
1).

For interoperability with many newer servents, this field SHOULD NOT
start with the magic byte 0xC3 or include the magic bytes sequence (0x1C,
0xC3) that delimits GGEP extensions. This field is deprecated in favor of
sets of GGEP extensions, which allow using extensions from multiple
vendors, stored in this Private Data field. In that case, the set of GGEP
extension is self delimited, and strictly bound to the above size limit.

Optional Signature Binary Data
Undocumented BearShare-specific data used to sign QueryHits descriptors
against fake hits coming from malicious servents. This field always comes
after all extensions in the optional Private Data field, and is only present if
the next field is also present, and its size is determined by the last field:

Optional Signature Size
BearShare servents using the authentication mechanism can add this field
and the previous one to sign QueryHits descriptors so that fake QueryHits
can be detected, and it may include other BearShare-specific information.
This extension is still experimental. This field is a single unsigned byte, it
indicates the size of the previous Signature Binary Data field. For
compatibility, the signature field will always follow a set of GGEP
extensions that must be terminated by a NUL GGEP extension. There
should be only one set of GGEP extensions in the Private Data.

A.1.3. Vendor codes

These codes are used in several extensions of the Gnutella protocol. They were
first introduced to be used in the BearShareTrailer EQHD, but they are now
commonly used in other extensions as well.

Vendor Code Application Name (4)

BEAR (5) BearShare

CULT (5) Cultiv8r (Emixode)

GNUC (5) Gnucleus

GTKG (5) Gtk-Gnutella

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

LIME (5) LimeWire

RAZA (5) Shareaza

SWAP (5) Swapper

ACQX (6) Acquisition

ARES (6) Ares (SoftGap)

MACT (6) Mactella

MMMM (6) Morpheus (v2.0+)

MNAP (6) MyNapster

MRPH (6) Morpheus (Old)

MUTE (6) Mutella

NAPS (6) NapShare

PHEX (6) Phex

QTEL (6) Qtella

TGWC (6) ???

TOAD (6) ToadNode

XOLO (6) Xolox
FISH PEERanha
GNOT Gnotella
GNUT Gnut
GNEW Gnewtellium
HSLG Hagelslag
OCFG OpenCola
OPRA Opera
SALM Salmonella
SNUT SwapNut
ZIGA Ziga

(4) More information on these applications can be found at
http://www.gnutelliums.com/.
(5) Servents that currently are very frequently found on the GNet, and using their
own core engine.
(6) Servents that currently are commonly found on the GNet, and/or using a core
engine from another vendor.
Vendors should register their peer code on the Database section of the following
forum http://groups.yahoo.com/the_gdf/ where the protocol status and its
revisions and extensions are discussed. This list only includes servents which
registered with a released and active status.

A.2. Extended Result Data extensions

A.2.1. Extended Result structure

An extended Result Structure contains additional Optional Result Data between

http://www.gnutelliums.com/
http://groups.yahoo.com/the_gdf/database/

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

the two NUL terminators:

Fields File
Index

File
Size

Shared File
Name

NUL (0x0)
Terminator

Optional
Result Data

NUL (0x0)
Terminator

Byte
offset 0...3 4...7 8...7+K 8+K 9+K...R-2 R-1

Some servents may process extended QueryHits descriptors without adverse
consequences by simply disregarding data between nuls. Others may, upon not
finding an element of the result terminated as expected, improperly read the
descriptor. Once misread, it may be subsequently mishandled, and the connection
that delivered it may be disconnected.

The Optional Result Data field MAY NOT include any binary NUL byte. But for
interoperability with other extensions, they may not include an ASCII FS
(0x1c=28) character, which is used now to delimit multiple extensions in this
field, and each extension should start with at least a magic byte characteristic of
its content type.

This extension mechanism in this field using the FS separator is known as the
Generic Extension Mechanism (GEM). Since the introduction of GGEP, no GEM
extension in that field should start with a byte 0xC3 that delimits the start of a set
of GGEP binary extensions, encoded with COBS (to avoid the presence of NUL
bytes in the binary extension). IF GGEP extensions are present, no other GEM
extension may follow it (the presence of a FS byte in the COBS-encoded GGEP
set must not be detected as a new GEM extension).

A.2.2. Gnotella Result Data extension

Versions of the Gnotella client at least as early as 0.73 (released July 30, 2000)
place extra data in QueryHit descriptors. According to the Gnutella 0.4 protocol
specification, each element of the Result Set in a QueryHit descriptor is
terminated by a double-nul. Gnotella may place extra data between the two nuls.

Although its exact layout is unknown, this data represents the bit-rate, sample
rate, and playing time of the MP3 file described by the result set entry. If the file
described by the result set entry is not an MP3 file, there is no data placed
between the nuls.

This extension is now deprecated, as it lacks a properly defined structure with a
recognizable content type.

A.2.3. LimeWire Meta-Data Result Data extension

Versions of LimeWire 1.8 or later can include meta-data for each Result inserted
in a QueryHits descriptor. This meta-data consists in XML encoded items, and
they are recognizable by their leading byte which is an ASCII "<" that starts an
XML declaration, or XML comment, or the starting tag of the XML root element.

The root element MUST NOT be a simple text element, but an explicitly named
element that encapsulates all the XML document, which must contain a element
for each tagged set of meta-data, whose name qualifies the XML schema
definition used to create each meta-data field, encoded as indicated in the

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

corresponding schema (for now, all meta-data information item is encoded as a
separate sub-element, instead of attributes of the container element qualifying the
schema).

This XML extension has no defined length, but consists only in printable ASCII
bytes and bytes in the range 0x80 to 0xFE using the default UTF-8 encoding or
another character encoding declared in a leading XML declaration; this extension
is terminated on the first ASCII FS or NUL character that follows it.

Important interoperability notice: The XML standard (see section 2.8 of the
XML 1.0 standard related to the "Prolog and Document Type Declaration", and
section 4.3.3 for "Character Encoding in Entities") implies that the "UTF-8"
charset is implied by default in all conforming XML documents, in absence of
an explicit <?xml encoding="..."?> declaration at the beginning of the document
(or without an leading "byte order mark" which may indicate "UTF-16", or "ISO-
10646-UCS-4"). Also the default XML version is "1.0". Typical servents won't
send this XML declaration.

So the "ISO-8859-1" character set MUST NOT be implied, but the 7-bit "US-
ASCII" encoding can be used without any explicit declaration, as it is a common
subset of both the "ISO-8859-1" and "UTF-8" encodings. Forgetting this
conformance rule may simply invalidate the XML meta-data which won't be
parsable by classic XML parsers such as Xerces for C or Java, or MSXML for
Windows servents (so the XML meta-data will be ignored by the recipient). If an
application does not wish to use the UTF-8 encoding, and prefer to use a legacy
"ISO-8859-1" encoding for non "US-ASCII" characters, the XML meta-data
document MUST start with one of the following explicit declarations:

<?xml encoding="ISO-8859-1"?>
<?xml version="1.0" encoding="ISO-8859-1"?>

Note that this XML extension may include 0xC3 bytes — needed for the UTF-8
encoding of Unicode characters in range U+00C0 to U+00FF, or if the ISO-8859-
1 character set is declared, for encoding a "Ã" character (uppercase Latin letter A
with tilde) — that MUST NOT be interpreted as prefixing a set of GGEP
extensions.

Native encoding issues: Applications written in C/C++ (notably on Windows)
MUST NOT assume that the system encoding is necessarily based on ISO-8859-
1: extended characters in the range 0x80 to 0x9F are NOT part of ISO-8859-1 (to
use them, you'll need to encode your document with Unicode and serialize it in
UTF-8, or specify an explicit "windows-1252" encoding), and the various native
Windows "ANSI" codepages may be based on other ISO-8859 encodings (notably
ISO-8859-2 or ISO-8859-4 in Central Europe, ISO-8859-5 in Russia, ISO-8859-7
in Greece, ISO-8859-9 in Turkey, ISO-8859-8 in Israel, ISO-8859-6 in North
Africa and Middle-East...), or on other Asian standards (Shift-JIS in Japan,
KSC5601 in Korea, GBK in China and Singapore, Big5 in Taiwan and Hong
Kong, ISCII in India, TIS-620 in Thailand, VISCII in Vietnam). On Windows,
applications can use the "GetACP()" Win32 API to get the "ANSI" codepage
used on the system (for references about Windows codepages see
http://www.microsoft.com/globaldev/reference/cphome.mspx). Applications
written in Java internally use a Unicode representation for characters and strings
independently of the supporting platform (so characters may be present outside of
the ISO-8859-1 range).

http://www.w3.org/TR/REC-xml
http://www.microsoft.com/globaldev/reference/cphome.mspx

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

Unicode representation issues: Unicode allows representing some characters in
different ways, with a precombined form where a single codepoint represent a
single character, or a decomposed form where multiple codepoints represent a
single character as a base character and one or several combining characters. For
interoperability of XML, the Unicode standard mandates using the canonical NFC
"Normalized Form with Composed characters" in all XML documents. This may
be an issue for interoperability, as some system APIs will return decomposed
characters, but other will only operate with precomposed characters in NFC form
(See http://www.unicode.org/reports/tr15/ for the Unicode Technical Report #15
about "Unicode Normalization Forms", and http://www.unicode.org/reports/tr20/
for the Unicode Technical Report #20 about "Unicode in XML and other Markup
Languages").

UTF-8 serialization issues for Unicode: the UTF-8 encoding was initially used
to serialize Unicode which used a single 16-bit code unit for each codepoint.
However, the Unicode codepoints are now 21-bit entities (from a larger 32-bit
"UCS4" set defined in ISO-10646), and some Unicode characters can only be
represented in 16-bit code units using "surrogate" pairs, with a leading high
surrogate in range 0xD800 to 0xDBFF, and a trailing surrogate in range 0xDC00
to 0xDFFF. These surrogates are NOT characters individually, so they MUST
NOT be serialized to UTF-8 (using 3 encoding bytes for each surrogate). Instead,
the surrogate pair must be converted as a whole, by first converting the pair to a
21 bit codepoint in range 0x10000 to 0x10FFFF, and then applying the UTF-8
serialization (which will return 4 encoding bytes, and not 6, for the whole
character). This is important for compatibility with the new mandatory Chinese
standard GB18030, which allocates characters out of the BMP. (See
http://www.unicode.org/reports/tr26/ for details about the Unicode Technical
Report #26 about "Compatibility Encoding Scheme for UTF-16: 8-Bit (CESU-
8)", but don't use this "CESU-8" encoding representation which is not widely
interoperable, and don't use this representation by assuming it is conforming to
"UTF-8").

A.2.4. URI Result Data extension and URI Extended Query extension

Newer versions of servents that implement the "HUGE" extended protocol that
enable identification of files by their content to provide accurate downloads from
a mesh of servents, will include a URI for each Result inserted in a QueryHits
descriptor.

An encoded URN are location independant and searchable on the network. An
encoded URL will allow alternate download locations or download protocols.

URNs are recognizable by their leading byte, an ASCII "u" character that starts
the URN encoding scheme. URLs MAY also be used, but they should only use
well-known and registered schemes (such as "http:" or "ftp:").

Servents SHOULD only generate a URI in the Optional Result Data field of
QueryHits Result structures only if requested to do so by using an URI Extended
Query Data extension. In Query descriptors, no URI is inserted, only the URI
encoding scheme is needed in the Optional Query Data extension field.

These URI extensions have no defined length, but consist only in printable ASCII
bytes, and will terminate on the first ASCII FS or NUL character that follows
each of them in QueryHits Result structures, and also by the end of the Payload

http://www.unicode.org/reports/tr15/
http://www.unicode.org/reports/tr20/
http://www.unicode.org/reports/tr26/

Gnutella - Stable - 0.4

http://rfc-gnutella.sourceforge.net/developer/stable/[25/08/14 8:44:57 PM]

of a Query Descriptor.

Home :: Developer :: Press :: Research :: Servents

http://rfc-gnutella.sourceforge.net/index.html
http://rfc-gnutella.sourceforge.net/developer/index.html
http://rfc-gnutella.sourceforge.net/press/index.html
http://rfc-gnutella.sourceforge.net/research/index.html
http://rfc-gnutella.sourceforge.net/servents/index.html
http://sourceforge.net/

	sourceforge.net
	Gnutella - Stable - 0.4

